Cargando…
M-BISON: Microarray-based integration of data sources using networks
BACKGROUND: The accurate detection of differentially expressed (DE) genes has become a central task in microarray analysis. Unfortunately, the noise level and experimental variability of microarrays can be limiting. While a number of existing methods partially overcome these limitations by incorpora...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396182/ https://www.ncbi.nlm.nih.gov/pubmed/18439292 http://dx.doi.org/10.1186/1471-2105-9-214 |
Sumario: | BACKGROUND: The accurate detection of differentially expressed (DE) genes has become a central task in microarray analysis. Unfortunately, the noise level and experimental variability of microarrays can be limiting. While a number of existing methods partially overcome these limitations by incorporating biological knowledge in the form of gene groups, these methods sacrifice gene-level resolution. This loss of precision can be inappropriate, especially if the desired output is a ranked list of individual genes. To address this shortcoming, we developed M-BISON (Microarray-Based Integration of data SOurces using Networks), a formal probabilistic model that integrates background biological knowledge with microarray data to predict individual DE genes. RESULTS: M-BISON improves signal detection on a range of simulated data, particularly when using very noisy microarray data. We also applied the method to the task of predicting heat shock-related differentially expressed genes in S. cerevisiae, using an hsf1 mutant microarray dataset and conserved yeast DNA sequence motifs. Our results demonstrate that M-BISON improves the analysis quality and makes predictions that are easy to interpret in concert with incorporated knowledge. Specifically, M-BISON increases the AUC of DE gene prediction from .541 to .623 when compared to a method using only microarray data, and M-BISON outperforms a related method, GeneRank. Furthermore, by analyzing M-BISON predictions in the context of the background knowledge, we identified YHR124W as a potentially novel player in the yeast heat shock response. CONCLUSION: This work provides a solid foundation for the principled integration of imperfect biological knowledge with gene expression data and other high-throughput data sources. |
---|