Cargando…
Estimation of Relevant Variables on High-Dimensional Biological Patterns Using Iterated Weighted Kernel Functions
BACKGROUND: The analysis of complex proteomic and genomic profiles involves the identification of significant markers within a set of hundreds or even thousands of variables that represent a high-dimensional problem space. The occurrence of noise, redundancy or combinatorial interactions in the prof...
Autores principales: | Rojas-Galeano, Sergio, Hsieh, Emily, Agranoff, Dan, Krishna, Sanjeev, Fernandez-Reyes, Delmiro |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396875/ https://www.ncbi.nlm.nih.gov/pubmed/18509521 http://dx.doi.org/10.1371/journal.pone.0001806 |
Ejemplares similares
-
Discovering feature relevancy and dependency by kernel-guided probabilistic model-building evolution
por: Rodriguez, Nestor, et al.
Publicado: (2017) -
Sharp maximal and weighted estimates for multilinear iterated commutators of multilinear integrals with generalized kernels
por: Lin, Yan, et al.
Publicado: (2017) -
Specialist hybrid models with asymmetric training for malaria prevalence prediction
por: Fisher, Thomas, et al.
Publicado: (2023) -
Estimates for iterated commutators of multilinear square fucntions with Dini-type kernels
por: Si, Zengyan, et al.
Publicado: (2018) -
Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum
por: Agranoff, Dan, et al.
Publicado: (2006)