Cargando…
Application of reinforcement learning for segmentation of transrectal ultrasound images
BACKGROUND: Among different medical image modalities, ultrasound imaging has a very widespread clinical use. But, due to some factors, such as poor image contrast, noise and missing or diffuse boundaries, the ultrasound images are inherently difficult to segment. An important application is estimati...
Autores principales: | Sahba, Farhang, Tizhoosh, Hamid R, Salama, Magdy MA |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397386/ https://www.ncbi.nlm.nih.gov/pubmed/18430220 http://dx.doi.org/10.1186/1471-2342-8-8 |
Ejemplares similares
-
A coarse-to-fine approach to prostate boundary segmentation in ultrasound images
por: Sahba, Farhang, et al.
Publicado: (2005) -
Integration of spatial information in convolutional neural networks for automatic segmentation of intraoperative transrectal ultrasound images
por: Ghavami, Nooshin, et al.
Publicado: (2018) -
Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer
por: Jang, Jihun, et al.
Publicado: (2021) -
Novel trends in transrectal ultrasound imaging of prostate gland carcinoma
por: Szopiński, Tomasz, et al.
Publicado: (2014) -
Texture Feature-Based Classification on Transrectal Ultrasound Image for Prostatic Cancer Detection
por: Huang, Xiaofu, et al.
Publicado: (2020)