Cargando…

Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri

We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares ∼28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic k...

Descripción completa

Detalles Bibliográficos
Autores principales: Fountain, Samuel J., Cao, Lishuang, Young, Mark T., North, R. Alan
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397467/
https://www.ncbi.nlm.nih.gov/pubmed/18381285
http://dx.doi.org/10.1074/jbc.M801512200
_version_ 1782155628015255552
author Fountain, Samuel J.
Cao, Lishuang
Young, Mark T.
North, R. Alan
author_facet Fountain, Samuel J.
Cao, Lishuang
Young, Mark T.
North, R. Alan
author_sort Fountain, Samuel J.
collection PubMed
description We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares ∼28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic kidney 293 cells expressing OtP2X. Whole-cell recordings showed concentration-dependent cation currents reversing close to zero mV; ATP gave a half-maximal current at 250 μm. αβ-Methylene-ATP evoked only small currents in comparison to ATP (EC(50) > 5 mm). 2′,3′-O-(4-Benzoylbenzoyl)-ATP, βγ-imido-ATP, ADP, and several other nucleotide triphosphates did not activate any current. The currents evoked by 300 μm ATP were not inhibited by 100 μm suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid, 2′,3′-O-(2,4,6-trinitrophenol)-ATP, or copper. Ion substitution experiments indicated permeabilities relative to sodium with the rank order calcium >choline >Tris >tetraethylammonium >N-methyl-d-glucosamine. However, OtP2X had a low relative calcium permeability (P(Ca)/P(Na) = 0.4) in comparison with other P2X receptors. This was due at least in part to the presence of an asparagine residue (Asn(353)) at a position in the second transmembrane domain in place of the aspartate that is completely conserved in all other P2X receptor subunits, because replacement of Asn(353) with aspartate increased calcium permeability by ∼50%. The results indicate that the ability of ATP to gate cation permeation across membranes exists in cells that diverged in evolutionary terms from animals about 1 billion years ago.
format Text
id pubmed-2397467
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-23974672008-09-15 Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri Fountain, Samuel J. Cao, Lishuang Young, Mark T. North, R. Alan J Biol Chem Membrane Transport, Structure, Function, and Biogenesis We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares ∼28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic kidney 293 cells expressing OtP2X. Whole-cell recordings showed concentration-dependent cation currents reversing close to zero mV; ATP gave a half-maximal current at 250 μm. αβ-Methylene-ATP evoked only small currents in comparison to ATP (EC(50) > 5 mm). 2′,3′-O-(4-Benzoylbenzoyl)-ATP, βγ-imido-ATP, ADP, and several other nucleotide triphosphates did not activate any current. The currents evoked by 300 μm ATP were not inhibited by 100 μm suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid, 2′,3′-O-(2,4,6-trinitrophenol)-ATP, or copper. Ion substitution experiments indicated permeabilities relative to sodium with the rank order calcium >choline >Tris >tetraethylammonium >N-methyl-d-glucosamine. However, OtP2X had a low relative calcium permeability (P(Ca)/P(Na) = 0.4) in comparison with other P2X receptors. This was due at least in part to the presence of an asparagine residue (Asn(353)) at a position in the second transmembrane domain in place of the aspartate that is completely conserved in all other P2X receptor subunits, because replacement of Asn(353) with aspartate increased calcium permeability by ∼50%. The results indicate that the ability of ATP to gate cation permeation across membranes exists in cells that diverged in evolutionary terms from animals about 1 billion years ago. American Society for Biochemistry and Molecular Biology 2008-05-30 /pmc/articles/PMC2397467/ /pubmed/18381285 http://dx.doi.org/10.1074/jbc.M801512200 Text en Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles
spellingShingle Membrane Transport, Structure, Function, and Biogenesis
Fountain, Samuel J.
Cao, Lishuang
Young, Mark T.
North, R. Alan
Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title_full Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title_fullStr Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title_full_unstemmed Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title_short Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri
title_sort permeation properties of a p2x receptor in the green algae ostreococcus tauri
topic Membrane Transport, Structure, Function, and Biogenesis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397467/
https://www.ncbi.nlm.nih.gov/pubmed/18381285
http://dx.doi.org/10.1074/jbc.M801512200
work_keys_str_mv AT fountainsamuelj permeationpropertiesofap2xreceptorinthegreenalgaeostreococcustauri
AT caolishuang permeationpropertiesofap2xreceptorinthegreenalgaeostreococcustauri
AT youngmarkt permeationpropertiesofap2xreceptorinthegreenalgaeostreococcustauri
AT northralan permeationpropertiesofap2xreceptorinthegreenalgaeostreococcustauri