Cargando…
Bayesian Spatio-Temporal Modeling of Schistosoma japonicum Prevalence Data in the Absence of a Diagnostic ‘Gold’ Standard
BACKGROUND: Spatial modeling is increasingly utilized to elucidate relationships between demographic, environmental, and socioeconomic factors, and infectious disease prevalence data. However, there is a paucity of studies focusing on spatio-temporal modeling that take into account the uncertainty o...
Autores principales: | Wang, Xian-Hong, Zhou, Xiao-Nong, Vounatsou, Penelope, Chen, Zhao, Utzinger, Jürg, Yang, Kun, Steinmann, Peter, Wu, Xiao-Hua |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2405951/ https://www.ncbi.nlm.nih.gov/pubmed/18545696 http://dx.doi.org/10.1371/journal.pntd.0000250 |
Ejemplares similares
-
Spatio-temporal analysis to identify determinants of Oncomelania hupensis infection with Schistosoma japonicum in Jiangsu province, China
por: Yang, Kun, et al.
Publicado: (2013) -
Bayesian geostatistical modelling of soil-transmitted helminth survey data in the People’s Republic of China
por: Lai, Ying-Si, et al.
Publicado: (2013) -
Spatio-temporal distribution of soil-transmitted helminth infections in Brazil
por: Chammartin, Frédérique, et al.
Publicado: (2014) -
A Bayesian approach to estimate the age-specific prevalence of Schistosoma mansoni and implications for schistosomiasis control
por: Raso, Giovanna, et al.
Publicado: (2007) -
Modelling age-heterogeneous Schistosoma haematobium and S. mansoni survey data via alignment factors
por: Schur, Nadine, et al.
Publicado: (2011)