Cargando…
Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study
Deep brain stimulation (DBS) of the bilateral subthalamic nucleus (STN) in Parkinson's disease is thought to produce adverse events such as emotional disorders, and in a recent study, we found fear recognition to be impaired as a result. These changes have been attributed to disturbance of the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408938/ https://www.ncbi.nlm.nih.gov/pubmed/18490359 http://dx.doi.org/10.1093/brain/awn084 |
Sumario: | Deep brain stimulation (DBS) of the bilateral subthalamic nucleus (STN) in Parkinson's disease is thought to produce adverse events such as emotional disorders, and in a recent study, we found fear recognition to be impaired as a result. These changes have been attributed to disturbance of the STN's limbic territory and would appear to confirm that the negative emotion recognition network passes through the STN. In addition, it is now widely acknowledged that damage to the orbitofrontal cortex (OFC), especially the right side, can result in impaired recognition of facial emotions (RFE). In this context, we hypothesized that this reduced recognition of fear is correlated with modifications in the cerebral glucose metabolism of the right OFC. The objective of the present study was first, to reinforce our previous results by demonstrating reduced fear recognition in our Parkinson's disease patient group following STN DBS and, second, to correlate these emotional performances with glucose metabolism using (18)FDG-PET. The (18)FDG-PET and RFE tasks were both performed by a cohort of 13 Parkinson's disease patients 3 months before and 3 months after surgery for STN DBS. As predicted, we observed a significant reduction in fear recognition following surgery and obtained a positive correlation between these neuropsychological results and changes in glucose metabolism, especially in the right OFC. These results confirm the role of the STN as a key basal ganglia structure in limbic circuits. |
---|