Cargando…
Model for the Peptide-Free Conformation of Class II MHC Proteins
BACKGROUND: Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here we use molecular dynamics simulations and exp...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408972/ https://www.ncbi.nlm.nih.gov/pubmed/18545669 http://dx.doi.org/10.1371/journal.pone.0002403 |
_version_ | 1782155729994514432 |
---|---|
author | Painter, Corrie A. Cruz, Anthony López, Gustavo E. Stern, Lawrence J. Zavala-Ruiz, Zarixia |
author_facet | Painter, Corrie A. Cruz, Anthony López, Gustavo E. Stern, Lawrence J. Zavala-Ruiz, Zarixia |
author_sort | Painter, Corrie A. |
collection | PubMed |
description | BACKGROUND: Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the α50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe α54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the α51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. CONCLUSION/SIGNIFICANCE: This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and can provide insight into possible mechanisms for DM action. |
format | Text |
id | pubmed-2408972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-24089722008-06-11 Model for the Peptide-Free Conformation of Class II MHC Proteins Painter, Corrie A. Cruz, Anthony López, Gustavo E. Stern, Lawrence J. Zavala-Ruiz, Zarixia PLoS One Research Article BACKGROUND: Major histocompatibility complex proteins are believed to undergo significant conformational changes concomitant with peptide binding, but structural characterization of these changes has remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here we use molecular dynamics simulations and experimental probes of protein conformation to investigate the peptide-free state of class II MHC proteins. Upon computational removal of the bound peptide from HLA-DR1-peptide complex, the α50-59 region folded into the P1-P4 region of the peptide binding site, adopting the same conformation as a bound peptide. Strikingly, the structure of the hydrophobic P1 pocket is maintained by engagement of the side chain of Phe α54. In addition, conserved hydrogen bonds observed in crystal structures between the peptide backbone and numerous MHC side chains are maintained between the α51-55 region and the rest of the molecule. The model for the peptide-free conformation was evaluated using conformationally-sensitive antibody and superantigen probes predicted to show no change, moderate change, or dramatic changes in their interaction with peptide-free DR1 and peptide-loaded DR1. The binding observed for these probes is in agreement with the movements predicted by the model. CONCLUSION/SIGNIFICANCE: This work presents a molecular model for peptide-free class II MHC proteins that can help to interpret the conformational changes known to occur within the protein during peptide binding and release, and can provide insight into possible mechanisms for DM action. Public Library of Science 2008-06-11 /pmc/articles/PMC2408972/ /pubmed/18545669 http://dx.doi.org/10.1371/journal.pone.0002403 Text en Painter et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Painter, Corrie A. Cruz, Anthony López, Gustavo E. Stern, Lawrence J. Zavala-Ruiz, Zarixia Model for the Peptide-Free Conformation of Class II MHC Proteins |
title | Model for the Peptide-Free Conformation of Class II MHC Proteins |
title_full | Model for the Peptide-Free Conformation of Class II MHC Proteins |
title_fullStr | Model for the Peptide-Free Conformation of Class II MHC Proteins |
title_full_unstemmed | Model for the Peptide-Free Conformation of Class II MHC Proteins |
title_short | Model for the Peptide-Free Conformation of Class II MHC Proteins |
title_sort | model for the peptide-free conformation of class ii mhc proteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408972/ https://www.ncbi.nlm.nih.gov/pubmed/18545669 http://dx.doi.org/10.1371/journal.pone.0002403 |
work_keys_str_mv | AT paintercorriea modelforthepeptidefreeconformationofclassiimhcproteins AT cruzanthony modelforthepeptidefreeconformationofclassiimhcproteins AT lopezgustavoe modelforthepeptidefreeconformationofclassiimhcproteins AT sternlawrencej modelforthepeptidefreeconformationofclassiimhcproteins AT zavalaruizzarixia modelforthepeptidefreeconformationofclassiimhcproteins |