Cargando…
Gene prediction in metagenomic fragments: A large scale machine learning approach
BACKGROUND: Metagenomics is an approach to the characterization of microbial genomes via the direct isolation of genomic sequences from the environment without prior cultivation. The amount of metagenomic sequence data is growing fast while computational methods for metagenome analysis are still in...
Autores principales: | Hoff, Katharina J, Tech, Maike, Lingner, Thomas, Daniel, Rolf, Morgenstern, Burkhard, Meinicke, Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409338/ https://www.ncbi.nlm.nih.gov/pubmed/18442389 http://dx.doi.org/10.1186/1471-2105-9-217 |
Ejemplares similares
-
Orphelia: predicting genes in metagenomic sequencing reads
por: Hoff, Katharina J., et al.
Publicado: (2009) -
Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites
por: Meinicke, Peter, et al.
Publicado: (2004) -
An unsupervised classification scheme for improving predictions of prokaryotic TIS
por: Tech, Maike, et al.
Publicado: (2006) -
Revealing large metagenomic regions through long DNA fragment hybridization capture
por: Gasc, Cyrielle, et al.
Publicado: (2017) -
Mixture models for analysis of the taxonomic composition of metagenomes
por: Meinicke, Peter, et al.
Publicado: (2011)