Cargando…
A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model
BACKGROUND: Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimens...
Autores principales: | Judson, Richard, Elloumi, Fathi, Setzer, R Woodrow, Li, Zhen, Shah, Imran |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409339/ https://www.ncbi.nlm.nih.gov/pubmed/18489778 http://dx.doi.org/10.1186/1471-2105-9-241 |
Ejemplares similares
-
Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates
por: Truong, Lisa, et al.
Publicado: (2017) -
Machine learning algorithms for mode-of-action classification in toxicity assessment
por: Zhang, Yile, et al.
Publicado: (2016) -
Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing
por: Wetmore, Barbara A., et al.
Publicado: (2015) -
Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation
por: Kapraun, Dustin F., et al.
Publicado: (2019) -
Multi-scale guided feature extraction and classification algorithm for hyperspectral images
por: Huang, Shiqi, et al.
Publicado: (2021)