Cargando…
Adaptive diffusion kernel learning from biological networks for protein function prediction
BACKGROUND: Machine-learning tools have gained considerable attention during the last few years for analyzing biological networks for protein function prediction. Kernel methods are suitable for learning from graph-based data such as biological networks, as they only require the abstraction of the s...
Autores principales: | Sun, Liang, Ji, Shuiwang, Ye, Jieping |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409449/ https://www.ncbi.nlm.nih.gov/pubmed/18366736 http://dx.doi.org/10.1186/1471-2105-9-162 |
Ejemplares similares
-
Multi-Label Dimensionality Reduction
por: Sun, Liang, et al.
Publicado: (2016) -
Multi-label dimensionality reduction
por: Ye, Jieping, et al.
Publicado: (2014) -
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
por: Zeng, Tao, et al.
Publicado: (2015) -
Improved functional prediction of proteins by learning kernel combinations in multilabel settings
por: Roth, Volker, et al.
Publicado: (2007) -
Biological plausibility of kernel-based learning
por: Fortney, Kristen, et al.
Publicado: (2007)