Cargando…

A double-blind, randomised, controlled Phase II trial of Heliox28 gas mixture in lung cancer patients with dyspnoea on exertion

Helium has a low density and the potential of reducing the work of breathing and improving alveolar ventilation when replacing nitrogen in air. A Phase II, double-blind, randomised, prospective, controlled trial was undertaken to assess whether Heliox28 (72% He/28% O(2)) compared with oxygen-enriche...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmedzai, S H, Laude, E, Robertson, A, Troy, G, Vora, V
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409543/
https://www.ncbi.nlm.nih.gov/pubmed/14735178
http://dx.doi.org/10.1038/sj.bjc.6601527
Descripción
Sumario:Helium has a low density and the potential of reducing the work of breathing and improving alveolar ventilation when replacing nitrogen in air. A Phase II, double-blind, randomised, prospective, controlled trial was undertaken to assess whether Heliox28 (72% He/28% O(2)) compared with oxygen-enriched air (72% N(2)/28% O(2)) or medical air (78.9% N(2)/21.1% O(2)) could reduce dyspnoea and improve the exercise capability of patients with primary lung cancer and dyspnoea on exertion (Borg >3). A total of 12 patients (seven male, five female patients, age 53–78) breathed the test gases in randomised order via a facemask and inspiratory demand valve at rest and while performing 6-min walk tests. Pulse oximetry (SaO(2)) was recorded continuously. Respiratory rate and dyspnoea ratings (Borg and VAS) were taken before and immediately post-walk. Breathing Heliox28 at rest significantly increased SaO(2) compared to oxygen-enriched air (96±2 cf. 94±2, P<0.01). When compared to medical air, breathing Heliox28 but not oxygen-enriched air gave a significant improvement in the exercise capability (P<0.0001), SaO(2) (P<0.05) and dyspnoea scores (VAS, P<0.05) of lung cancer patients.