Cargando…
Overexpression of VEGF(121), but not VEGF(165) or FGF-1, improves oxygenation in MCF-7 breast tumours
Vascular endothelial growth factor (VEGF) is an intensively studied molecule that has significant potential, both in stimulating angiogenesis and as a target for antiangiogenic approaches. We utilised MCF-7 breast cancer cells transfected with either of two of the major VEGF isoforms, VEGF(121) or V...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409569/ https://www.ncbi.nlm.nih.gov/pubmed/14735189 http://dx.doi.org/10.1038/sj.bjc.6601539 |
Sumario: | Vascular endothelial growth factor (VEGF) is an intensively studied molecule that has significant potential, both in stimulating angiogenesis and as a target for antiangiogenic approaches. We utilised MCF-7 breast cancer cells transfected with either of two of the major VEGF isoforms, VEGF(121) or VEGF(165), or fibroblast growth factor-1 (FGF-1) to distinguish the effects of these factors on tumour growth, vascular function, and oxygen delivery. While each transfectant demonstrated substantially increased tumorigenicity and growth rate compared to vector controls, only VEGF(121) produced a combination of significantly reduced total and perfused vessel spacing, as well as a corresponding reduction in overall tumour hypoxia. Such pathophysiological effects are of potential importance, since antiangiogenic agents designed to block VEGF isoforms could in turn result in the development of therapeutically unfavourable environments. If antiangiogenic agents are also combined with conventional therapies such as irradiation or chemotherapy, microregional deficiencies in oxygenation could play a key role in ultimate therapeutic success. |
---|