Cargando…

In vivo bioluminescence imaging of locally disseminated colon carcinoma in rats

Animal tumour models using orthotopic tumours for the evaluation of cancer therapies are of greater clinical relevance than subcutaneous models, but they also pose greater difficulties for measuring tumour size and quantifying response to treatment. In this study, we used noninvasive bioluminescence...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeamari, S, Rumping, G, Floot, B, Lyons, S, Stewart, F A
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409642/
https://www.ncbi.nlm.nih.gov/pubmed/15026810
http://dx.doi.org/10.1038/sj.bjc.6601637
Descripción
Sumario:Animal tumour models using orthotopic tumours for the evaluation of cancer therapies are of greater clinical relevance than subcutaneous models, but they also pose greater difficulties for measuring tumour size and quantifying response to treatment. In this study, we used noninvasive bioluminescence imaging to monitor the intraperitoneal growth of luciferase-transfected CC531 colorectal cells in adult WAG/RIJ rats. The bioluminescence signal correlated well with post-mortem assessment of tumour load by visual inspection of the peritoneal cavity at specific follow-up times. Using bioluminescence imaging, we were able to monitor peritoneal tumour growth sequentially in time and to calculate a tumour growth rate for each animal; this is not possible with invasive methods of evaluating tumour load. Bioluminescence imaging of rats treated with a single dose of cisplatin (4 mg kg(−1), i.p.) demonstrated a significant delay in peritoneal tumour growth relative to saline controls (mean 45.0±s.d. 13.0 vs 28.2±10.3 days; P=0.04). Similar protocols evaluated by visual scoring of tumour load at 40 days after inoculation supported these findings, although no quantitative assessment of treatment-induced growth delay could be made by this method. This study shows that in vivo imaging of luciferase-transfected tumour cells is a useful tool to investigate the dynamics of disseminated tumour growth and efficacy of anticancer treatment in orthotopic models of peritoneal cancer in rats. It offers an attractive alternative to invasive methods, and requires fewer animals for measuring tumour response to therapy.