Cargando…
Repair of radiation damage to DNA
DNA double-strand breaks constitute the most dangerous type of DNA damage induced by ionising radiation (IR). Accordingly, the resistance of cells to IR is modulated by three intimately related cellular processes: DNA repair, recombination, and replication. Significant discoveries in this field of r...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409689/ https://www.ncbi.nlm.nih.gov/pubmed/15054444 http://dx.doi.org/10.1038/sj.bjc.6601729 |
Sumario: | DNA double-strand breaks constitute the most dangerous type of DNA damage induced by ionising radiation (IR). Accordingly, the resistance of cells to IR is modulated by three intimately related cellular processes: DNA repair, recombination, and replication. Significant discoveries in this field of research have been made over the last few years. A picture seems to be emerging in which perturbations of recombination in cancer cells are a more widespread cause of genomic instability than previously appreciated. Conversely, such cells may also be more sensitive to certain chemotherapeutic drugs and to IR. Thus, the alterations in recombination that promote carcinogenesis by causing genomic instability may also be the weakness of the tumours that arise in this setting, a concept which could hold great promise for the advancement of cancer treatment in the not too distant future. |
---|