Cargando…

Effects of overexpression of ephrin-B2 on tumour growth in human colorectal cancer

Eph receptor tyrosine kinases (RTKs) and their membrane-bound ligands, the ephrins, are essential for embryonic vascular development. Recently, it has been demonstrated that overexpression of specific Ephs and ephrins is associated with a poor prognosis in human tumours. Our group has shown that Eph...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, W, Jung, Y D, Ahmad, S A, McCarty, M F, Stoeltzing, O, Reinmuth, N, Fan, F, Ellis, L M
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409715/
https://www.ncbi.nlm.nih.gov/pubmed/15083195
http://dx.doi.org/10.1038/sj.bjc.6601723
Descripción
Sumario:Eph receptor tyrosine kinases (RTKs) and their membrane-bound ligands, the ephrins, are essential for embryonic vascular development. Recently, it has been demonstrated that overexpression of specific Ephs and ephrins is associated with a poor prognosis in human tumours. Our group has shown that EphB and the ephrin-B subfamilies are coexpressed in human colorectal cancer, and ephrin-B2 is expressed at higher levels in human colorectal cancer than in adjacent normal mucosa. As the Eph/ephrin system is involved in embryologic vasculogenesis and ephrin-B2 is expressed ubiquitously in all colon cancers studied in our laboratory, we hypothesised that overexpression of ephrin-B2 in colon cancer cells may induce tumour angiogenesis and increase tumour growth. To investigate this hypothesis, we stably transfected KM12L4 human colon cancer cells with ephrin-B2 to study its effect on tumour growth in vivo. We found that overexpression of ephrin-B2 markedly decreased tumour growth in a mouse xenograft model. Immunohistochemical staining showed that ephrin-B2 transfectants produced higher tumour microvessel density and lower tumour cell proliferation than did parental or vector-transfected control cells. Using (51)Cr-labelled red blood cells (RBCs) to determine the functional blood volume in tumours, we demonstrated that tumours from ephrin-B2-transfected cells had significantly decreased blood volume compared with tumours from parental or vector-transfected control cells. Evaluation of in vitro parameters of cell cycle mediators demonstrated no alteration in the cell cycle. Although ephrin-B2 transfection increased tumour vessel density, the decrease in blood perfusion suggests that these vessels may be ‘dysfunctional’. We conclude that overexpression of ephrin-B2 suppresses tumour cell growth and vascular function in this in vivo colon cancer model.