Cargando…

Steroid-free medium discloses oestrogenic effects of the bisphosphonate clodronate on breast cancer cells

Tamoxifen is the standard first-line endocrine therapy for breast cancer, but recent data indicate that it is likely to be replaced by the effective aromatase inhibitors (AIs), in both the metastatic and adjuvant settings. Aromatase inhibitors induce complete oestrogen deprivation that leads to clin...

Descripción completa

Detalles Bibliográficos
Autores principales: Journe, F, Chaboteaux, C, Dumon, J-C, Leclercq, G, Laurent, G, Body, J-J
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409948/
https://www.ncbi.nlm.nih.gov/pubmed/15477866
http://dx.doi.org/10.1038/sj.bjc.6602181
Descripción
Sumario:Tamoxifen is the standard first-line endocrine therapy for breast cancer, but recent data indicate that it is likely to be replaced by the effective aromatase inhibitors (AIs), in both the metastatic and adjuvant settings. Aromatase inhibitors induce complete oestrogen deprivation that leads to clinically significant bone loss. Several ongoing or planned trials combine AIs with bisphosphonates, even more so that recent data reveal that clodronate may reduce the incidence of bone metastases and prolong survival in the adjuvant setting. Bisphosphonates can inhibit breast cancer cell growth in vitro, but they have never been studied in steroid-free medium (SFM), an in vitro environment that mimics the effects of AIs in vivo. Quite surprisingly, in SFM, clodronate stimulated MCF-7 cell growth in a time- and dose-dependent manner by up to two-fold (crystal violet staining assay), whereas it had no mitogenic activity in complete medium. The bisphosphonate similarly increased the proliferation of IBEP-2 cells, which also express a functional oestrogen receptor (ER), while it weakly inhibited the growth of the ER-negative MDA-MB-231 cells. Expectedly, 17β-oestradiol stimulated the growth of MCF-7 and IBEP-2 cells cultured in SFM, and had no effect on MDA-MB-231 cells. Moreover, partial (4-OH-tamoxifen) and pure antioestrogens (fulvestrant, ICI 182,780), in combination with clodronate, completely suppressed the mitogenic effect of the bisphosphonate, suggesting that it was mediated by an activation of ER. In accordance with this view, clodronate induced ER downregulation, weakly increased progesterone receptor expression, and stimulated the transcription of an oestrogen-responsive reporter gene. In conclusion, we report a previously unknown stimulatory effect of clodronate on MCF-7 cells grown in SFM, in vitro conditions that are potentially relevant to the use of AIs for breast cancer. Moreover, our data suggest that ER is involved in these effects of clodronate on cancer cell growth.