Cargando…
Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data
BACKGROUND: High-throughput gene expression data can predict gene function through the “guilt by association” principle: coexpressed genes are likely to be functionally associated. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed publicly available expression data on normal human tissues. The analysis is...
Autores principales: | Miozzi, Laura, Piro, Rosario Michael, Rosa, Fabio, Ala, Ugo, Silengo, Lorenzo, Di Cunto, Ferdinando, Provero, Paolo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409962/ https://www.ncbi.nlm.nih.gov/pubmed/18560577 http://dx.doi.org/10.1371/journal.pone.0002439 |
Ejemplares similares
-
Candidate gene prioritization based on spatially mapped gene expression: an application to XLMR
por: Piro, Rosario M., et al.
Publicado: (2010) -
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
por: Ala, Ugo, et al.
Publicado: (2008) -
Evaluation of Candidate Genes from Orphan FEB and GEFS+ Loci by Analysis of Human Brain Gene Expression Atlases
por: Piro, Rosario M., et al.
Publicado: (2011) -
Computational identification of transcription factor binding sites by functional analysis of sets of genes sharing overrep-resented upstream motifs
por: Corà, Davide, et al.
Publicado: (2004) -
CLOE: Identification of putative functional relationships among genes by comparison of expression profiles between two species
por: Pellegrino, Maurizio, et al.
Publicado: (2004)