Cargando…
How Athila retrotransposons survive in the Arabidopsis genome
BACKGROUND: Transposable elements are selfish genetic sequences which only occasionally provide useful functions to their host species. In addition, models of mobile element evolution assume a second type of selfishness: elements of different familes do not cooperate, but they independently fight fo...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410132/ https://www.ncbi.nlm.nih.gov/pubmed/18479510 http://dx.doi.org/10.1186/1471-2164-9-219 |
Sumario: | BACKGROUND: Transposable elements are selfish genetic sequences which only occasionally provide useful functions to their host species. In addition, models of mobile element evolution assume a second type of selfishness: elements of different familes do not cooperate, but they independently fight for their survival in the host genome. RESULTS: We show that recombination events among distantly related Athila retrotransposons have led to the generation of new Athila lineages. Their pattern of diversification suggests that Athila elements survive in Arabidopsis by a combination of selfish replication and of amplification of highly diverged copies with coding potential. Many Athila elements are non-autonomous but still conserve intact open reading frames which are under the effect of negative, purifying natural selection. CONCLUSION: The evolution of these mobile elements is far more complex than hitherto assumed. Strict selfish replication does not explain all the patterns observed. |
---|