Cargando…

Host genetics and tumour metastasis

Metastasis, the spread and growth of tumours at secondary sites, is an extremely important clinical event, since a majority of cancer mortality is associated with the metastatic tumours, rather than the primary tumour. In spite of the importance of metastasis in the clinical setting, the actual proc...

Descripción completa

Detalles Bibliográficos
Autor principal: Hunter, K W
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410172/
https://www.ncbi.nlm.nih.gov/pubmed/14970848
http://dx.doi.org/10.1038/sj.bjc.6601590
_version_ 1782155945113026560
author Hunter, K W
author_facet Hunter, K W
author_sort Hunter, K W
collection PubMed
description Metastasis, the spread and growth of tumours at secondary sites, is an extremely important clinical event, since a majority of cancer mortality is associated with the metastatic tumours, rather than the primary tumour. In spite of the importance of metastasis in the clinical setting, the actual process is extremely inefficient. Millions of tumour cells can be shed into the vasculature daily; yet, few secondary tumours are formed. The classical hypothesis explaining the inefficiency was a series of secondary events occurring in the tumour, resulting in a small subpopulation of cells capable of completing all of the steps required to successfully colonise a distant site. However, recent discoveries demonstrating the ability to predict metastatic propensity from gene expression profiles in bulk tumour tissue are not consistent with only a small subpopulation of cells in the primary tumour acquiring metastatic ability, suggesting that metastatic ability might be pre-programmed in tumours by the initiating oncogenic mutations. Data supporting both of these seemingly incompatible theories exist. Therefore, to reconcile the observed results, additional variables need to be added to the model of metastatic inefficiency. One possible variable that might explain the discrepancies is genetic background effects. Studies have demonstrated that the genetic background on which a tumour arises on can have significant affects on the ability of the tumour to metastasise and on gene expression profiles. Thus, the observations could be reconciled by combining the theories, with genetic background influencing both metastatic efficiency and predictive gene expression profiles, upon which, subsequently, metastasis-promoting mutational and epigenetic events occur. If the genetic background is an important determinant of metastatic efficiency, it would have significant implications for the clinical prediction and treatment of metastatic disease, as well as for the design of potential prevention strategies.
format Text
id pubmed-2410172
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-24101722009-09-10 Host genetics and tumour metastasis Hunter, K W Br J Cancer Minireview Metastasis, the spread and growth of tumours at secondary sites, is an extremely important clinical event, since a majority of cancer mortality is associated with the metastatic tumours, rather than the primary tumour. In spite of the importance of metastasis in the clinical setting, the actual process is extremely inefficient. Millions of tumour cells can be shed into the vasculature daily; yet, few secondary tumours are formed. The classical hypothesis explaining the inefficiency was a series of secondary events occurring in the tumour, resulting in a small subpopulation of cells capable of completing all of the steps required to successfully colonise a distant site. However, recent discoveries demonstrating the ability to predict metastatic propensity from gene expression profiles in bulk tumour tissue are not consistent with only a small subpopulation of cells in the primary tumour acquiring metastatic ability, suggesting that metastatic ability might be pre-programmed in tumours by the initiating oncogenic mutations. Data supporting both of these seemingly incompatible theories exist. Therefore, to reconcile the observed results, additional variables need to be added to the model of metastatic inefficiency. One possible variable that might explain the discrepancies is genetic background effects. Studies have demonstrated that the genetic background on which a tumour arises on can have significant affects on the ability of the tumour to metastasise and on gene expression profiles. Thus, the observations could be reconciled by combining the theories, with genetic background influencing both metastatic efficiency and predictive gene expression profiles, upon which, subsequently, metastasis-promoting mutational and epigenetic events occur. If the genetic background is an important determinant of metastatic efficiency, it would have significant implications for the clinical prediction and treatment of metastatic disease, as well as for the design of potential prevention strategies. Nature Publishing Group 2004-02-23 2004-02-17 /pmc/articles/PMC2410172/ /pubmed/14970848 http://dx.doi.org/10.1038/sj.bjc.6601590 Text en Copyright © 2004 Cancer Research UK https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.
spellingShingle Minireview
Hunter, K W
Host genetics and tumour metastasis
title Host genetics and tumour metastasis
title_full Host genetics and tumour metastasis
title_fullStr Host genetics and tumour metastasis
title_full_unstemmed Host genetics and tumour metastasis
title_short Host genetics and tumour metastasis
title_sort host genetics and tumour metastasis
topic Minireview
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410172/
https://www.ncbi.nlm.nih.gov/pubmed/14970848
http://dx.doi.org/10.1038/sj.bjc.6601590
work_keys_str_mv AT hunterkw hostgeneticsandtumourmetastasis