Cargando…

Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy

Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor tumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, P S, Viviers, L, Abson, C, Rowland, I J, Brada, M, Leach, M O, Dzik-Jurasz, A S K
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410174/
https://www.ncbi.nlm.nih.gov/pubmed/14970853
http://dx.doi.org/10.1038/sj.bjc.6601593
Descripción
Sumario:Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(−2) day(−1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing the tumour size. Short (TE (echo time)=20 ms) and long (TE=135 ms) echo time single voxel spectroscopy was performed in parallel to determine metabolite profiles. The mean tumour volume change at the end of treatment was −33% (s.d.=20). The dominant metabolite in long echo time spectra was choline. At 12 months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide.