Cargando…
Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy
Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor tumo...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2410174/ https://www.ncbi.nlm.nih.gov/pubmed/14970853 http://dx.doi.org/10.1038/sj.bjc.6601593 |
Sumario: | Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(−2) day(−1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing the tumour size. Short (TE (echo time)=20 ms) and long (TE=135 ms) echo time single voxel spectroscopy was performed in parallel to determine metabolite profiles. The mean tumour volume change at the end of treatment was −33% (s.d.=20). The dominant metabolite in long echo time spectra was choline. At 12 months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide. |
---|