Cargando…
Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization
BACKGROUND: Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare. In order to investigate the molecular mechanisms underlying this process, several studies have been conducted...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2412902/ https://www.ncbi.nlm.nih.gov/pubmed/18489742 http://dx.doi.org/10.1186/1471-2199-9-49 |
_version_ | 1782155993567723520 |
---|---|
author | Cappelli, Katia Felicetti, Michela Capomaccio, Stefano Spinsanti, Giacomo Silvestrelli, Maurizio Supplizi, Andrea Verini |
author_facet | Cappelli, Katia Felicetti, Michela Capomaccio, Stefano Spinsanti, Giacomo Silvestrelli, Maurizio Supplizi, Andrea Verini |
author_sort | Cappelli, Katia |
collection | PubMed |
description | BACKGROUND: Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare. In order to investigate the molecular mechanisms underlying this process, several studies have been conducted that take advantage of microarray and quantitative real-time PCR (qRT-PCR) technologies to analyse the expression of candidate genes involved in the cellular stress response. Appropriate application of qRT-PCR, however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. RESULTS: The expression of nine potential reference genes was evaluated in lymphocytes of ten endurance horses during strenuous exercise. These genes were tested by qRT-PCR and ranked according to the stability of their expression using three different methods (implemented in geNorm, NormFinder and BestKeeper). Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyltransferase (HPRT) always ranked as the two most stably expressed genes. On the other hand, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), transferrin receptor (TFRC) and ribosomal protein L32 (RPL32) were constantly classified as the less reliable controls. CONCLUSION: This study underlines the importance of a careful selection of reference genes for qRT-PCR studies of exercise induced stress in horses. Our results, based on different algorithms and analytical procedures, clearly indicate SDHA and HPRT as the most stable reference genes of our pool. |
format | Text |
id | pubmed-2412902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24129022008-06-05 Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization Cappelli, Katia Felicetti, Michela Capomaccio, Stefano Spinsanti, Giacomo Silvestrelli, Maurizio Supplizi, Andrea Verini BMC Mol Biol Research Article BACKGROUND: Adequate stress response is a critical factor during athlete horses' training and is central to our capacity to obtain better performances while safeguarding animal welfare. In order to investigate the molecular mechanisms underlying this process, several studies have been conducted that take advantage of microarray and quantitative real-time PCR (qRT-PCR) technologies to analyse the expression of candidate genes involved in the cellular stress response. Appropriate application of qRT-PCR, however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. RESULTS: The expression of nine potential reference genes was evaluated in lymphocytes of ten endurance horses during strenuous exercise. These genes were tested by qRT-PCR and ranked according to the stability of their expression using three different methods (implemented in geNorm, NormFinder and BestKeeper). Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyltransferase (HPRT) always ranked as the two most stably expressed genes. On the other hand, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), transferrin receptor (TFRC) and ribosomal protein L32 (RPL32) were constantly classified as the less reliable controls. CONCLUSION: This study underlines the importance of a careful selection of reference genes for qRT-PCR studies of exercise induced stress in horses. Our results, based on different algorithms and analytical procedures, clearly indicate SDHA and HPRT as the most stable reference genes of our pool. BioMed Central 2008-05-19 /pmc/articles/PMC2412902/ /pubmed/18489742 http://dx.doi.org/10.1186/1471-2199-9-49 Text en Copyright © 2008 Cappelli et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cappelli, Katia Felicetti, Michela Capomaccio, Stefano Spinsanti, Giacomo Silvestrelli, Maurizio Supplizi, Andrea Verini Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title | Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title_full | Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title_fullStr | Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title_full_unstemmed | Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title_short | Exercise induced stress in horses: Selection of the most stable reference genes for quantitative RT-PCR normalization |
title_sort | exercise induced stress in horses: selection of the most stable reference genes for quantitative rt-pcr normalization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2412902/ https://www.ncbi.nlm.nih.gov/pubmed/18489742 http://dx.doi.org/10.1186/1471-2199-9-49 |
work_keys_str_mv | AT cappellikatia exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization AT felicettimichela exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization AT capomacciostefano exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization AT spinsantigiacomo exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization AT silvestrellimaurizio exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization AT suppliziandreaverini exerciseinducedstressinhorsesselectionofthemoststablereferencegenesforquantitativertpcrnormalization |