Cargando…
A structural annotation resource for the selection of putative target proteins in the malaria parasite
BACKGROUND: Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, var...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413252/ https://www.ncbi.nlm.nih.gov/pubmed/18500983 http://dx.doi.org/10.1186/1475-2875-7-90 |
_version_ | 1782156041277931520 |
---|---|
author | Joubert, Yolandi Joubert, Fourie |
author_facet | Joubert, Yolandi Joubert, Fourie |
author_sort | Joubert, Yolandi |
collection | PubMed |
description | BACKGROUND: Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in Plasmodium falciparum proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of P. falciparum proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies. METHODS: An integrated structural annotation system was developed and applied to P. falciparum, Plasmodium vivax and Plasmodium yoelii. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features. RESULTS: The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features [1]. Analysis of features in the P. falciparum proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread. CONCLUSION: A series of P. falciparum protein targets for experimental structure determination, comparative modelling and in silico docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features. |
format | Text |
id | pubmed-2413252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24132522008-06-06 A structural annotation resource for the selection of putative target proteins in the malaria parasite Joubert, Yolandi Joubert, Fourie Malar J Methodology BACKGROUND: Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in Plasmodium falciparum proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of P. falciparum proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies. METHODS: An integrated structural annotation system was developed and applied to P. falciparum, Plasmodium vivax and Plasmodium yoelii. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features. RESULTS: The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features [1]. Analysis of features in the P. falciparum proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread. CONCLUSION: A series of P. falciparum protein targets for experimental structure determination, comparative modelling and in silico docking studies were putatively identified. The system is available for public use, where researchers may identify proteins by querying with multiple physico-chemical, sequence similarity and interaction features. BioMed Central 2008-05-23 /pmc/articles/PMC2413252/ /pubmed/18500983 http://dx.doi.org/10.1186/1475-2875-7-90 Text en Copyright © 2008 Joubert and Joubert; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Joubert, Yolandi Joubert, Fourie A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_full | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_fullStr | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_full_unstemmed | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_short | A structural annotation resource for the selection of putative target proteins in the malaria parasite |
title_sort | structural annotation resource for the selection of putative target proteins in the malaria parasite |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413252/ https://www.ncbi.nlm.nih.gov/pubmed/18500983 http://dx.doi.org/10.1186/1475-2875-7-90 |
work_keys_str_mv | AT joubertyolandi astructuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertfourie astructuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertyolandi structuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite AT joubertfourie structuralannotationresourcefortheselectionofputativetargetproteinsinthemalariaparasite |