Cargando…

Multiple Interactions between Peroxisome Proliferators-Activated Receptors and the Ubiquitin-Proteasome System and Implications for Cancer Pathogenesis

The peroxisome proliferator-activated receptors (PPAR) α, β/δ, and γ are ligand-activated nuclear receptors involved in a number of physiological processes, including lipid and glucose homeostasis, inflammation, cell growth, differentiation, and death. PPAR agonists are used in the treatment of huma...

Descripción completa

Detalles Bibliográficos
Autores principales: Genini, Davide, Carbone, Giuseppina M., Catapano, Carlo V.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423003/
https://www.ncbi.nlm.nih.gov/pubmed/18551186
http://dx.doi.org/10.1155/2008/195065
Descripción
Sumario:The peroxisome proliferator-activated receptors (PPAR) α, β/δ, and γ are ligand-activated nuclear receptors involved in a number of physiological processes, including lipid and glucose homeostasis, inflammation, cell growth, differentiation, and death. PPAR agonists are used in the treatment of human diseases, like type 2 diabetes and dyslipidemia, and PPARs appear as promising therapeutic targets in other conditions, including cancer. A better understanding of the functions and regulation of PPARs in normal and pathological processes is of primary importance to devise appropriate therapeutic strategies. The ubiquitin-proteasome system (UPS) plays an important role in controlling level and activity of many nuclear receptors and transcription factors. PPARs are subjected to UPS-dependent regulation. Interestingly, the three PPAR isotypes are differentially regulated by the UPS in response to ligand-dependent activation, a phenomenon that may be intrinsically connected to their distinct cellular functions and behaviors. In addition to their effects ongene expression, PPARs appear to affect protein levels and downstream pathways also by modulating the activity of the UPS in target-specific manners. Here we review the current knowledge of the interactions between the UPS and PPARs in light of the potential implications for their effects on cell fate and tumorigenesis.