Cargando…
Dimension reduction with redundant gene elimination for tumor classification
BACKGROUND: Analysis of gene expression data for tumor classification is an important application of bioinformatics methods. But it is hard to analyse gene expression data from DNA microarray experiments by commonly used classifiers, because there are only a few observations but with thousands of me...
Autores principales: | Zeng, Xue-Qiang, Li, Guo-Zheng, Yang, Jack Y, Yang, Mary Qu, Wu, Geng-Feng |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423430/ https://www.ncbi.nlm.nih.gov/pubmed/18541061 http://dx.doi.org/10.1186/1471-2105-9-S6-S8 |
Ejemplares similares
-
Supervised redundant feature detection for tumor classification
por: Zeng, Xue-Qiang, et al.
Publicado: (2014) -
Information filtering based on corrected redundancy-eliminating mass diffusion
por: Zhu, Xuzhen, et al.
Publicado: (2017) -
Multimodal Dimension Reduction and Subtype Classification of Head and Neck Squamous Cell Tumors
por: Bard, Jonathan E., et al.
Publicado: (2022) -
Metabolic network visualization eliminating node redundance and preserving metabolic pathways
por: Bourqui, Romain, et al.
Publicado: (2007) -
Fuzzy Logic for Elimination of Redundant Information of Microarray Data
por: Huerta, Edmundo Bonilla, et al.
Publicado: (2008)