Cargando…

Genetic weighted k-means algorithm for clustering large-scale gene expression data

BACKGROUND: The traditional (unweighted) k-means is one of the most popular clustering methods for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to initial partitions, its result is prone to the local minima, and it is only applicable to data with sphe...

Descripción completa

Detalles Bibliográficos
Autor principal: Wu, Fang-Xiang
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423435/
https://www.ncbi.nlm.nih.gov/pubmed/18541047
http://dx.doi.org/10.1186/1471-2105-9-S6-S12
_version_ 1782156098615115776
author Wu, Fang-Xiang
author_facet Wu, Fang-Xiang
author_sort Wu, Fang-Xiang
collection PubMed
description BACKGROUND: The traditional (unweighted) k-means is one of the most popular clustering methods for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to initial partitions, its result is prone to the local minima, and it is only applicable to data with spherical-shape clusters. The last shortcoming means that we must assume that gene expression data at the different conditions follow the independent distribution with the same variances. Nevertheless, this assumption is not true in practice. RESULTS: In this paper, we propose a genetic weighted K-means algorithm (denoted by GWKMA), which solves the first two problems and partially remedies the third one. GWKMA is a hybridization of a genetic algorithm (GA) and a weighted K-means algorithm (WKMA). In GWKMA, each individual is encoded by a partitioning table which uniquely determines a clustering, and three genetic operators (selection, crossover, mutation) and a WKM operator derived from WKMA are employed. The superiority of the GWKMA over the k-means is illustrated on a synthetic and two real-life gene expression datasets. CONCLUSION: The proposed algorithm has general application to clustering large-scale biological data such as gene expression data and peptide mass spectral data.
format Text
id pubmed-2423435
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-24234352008-06-11 Genetic weighted k-means algorithm for clustering large-scale gene expression data Wu, Fang-Xiang BMC Bioinformatics Research BACKGROUND: The traditional (unweighted) k-means is one of the most popular clustering methods for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to initial partitions, its result is prone to the local minima, and it is only applicable to data with spherical-shape clusters. The last shortcoming means that we must assume that gene expression data at the different conditions follow the independent distribution with the same variances. Nevertheless, this assumption is not true in practice. RESULTS: In this paper, we propose a genetic weighted K-means algorithm (denoted by GWKMA), which solves the first two problems and partially remedies the third one. GWKMA is a hybridization of a genetic algorithm (GA) and a weighted K-means algorithm (WKMA). In GWKMA, each individual is encoded by a partitioning table which uniquely determines a clustering, and three genetic operators (selection, crossover, mutation) and a WKM operator derived from WKMA are employed. The superiority of the GWKMA over the k-means is illustrated on a synthetic and two real-life gene expression datasets. CONCLUSION: The proposed algorithm has general application to clustering large-scale biological data such as gene expression data and peptide mass spectral data. BioMed Central 2008-05-28 /pmc/articles/PMC2423435/ /pubmed/18541047 http://dx.doi.org/10.1186/1471-2105-9-S6-S12 Text en Copyright © 2008 Wu; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Wu, Fang-Xiang
Genetic weighted k-means algorithm for clustering large-scale gene expression data
title Genetic weighted k-means algorithm for clustering large-scale gene expression data
title_full Genetic weighted k-means algorithm for clustering large-scale gene expression data
title_fullStr Genetic weighted k-means algorithm for clustering large-scale gene expression data
title_full_unstemmed Genetic weighted k-means algorithm for clustering large-scale gene expression data
title_short Genetic weighted k-means algorithm for clustering large-scale gene expression data
title_sort genetic weighted k-means algorithm for clustering large-scale gene expression data
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423435/
https://www.ncbi.nlm.nih.gov/pubmed/18541047
http://dx.doi.org/10.1186/1471-2105-9-S6-S12
work_keys_str_mv AT wufangxiang geneticweightedkmeansalgorithmforclusteringlargescalegeneexpressiondata