Cargando…
Genetic weighted k-means algorithm for clustering large-scale gene expression data
BACKGROUND: The traditional (unweighted) k-means is one of the most popular clustering methods for analyzing gene expression data. However, it suffers three major shortcomings. It is sensitive to initial partitions, its result is prone to the local minima, and it is only applicable to data with sphe...
Autor principal: | Wu, Fang-Xiang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423435/ https://www.ncbi.nlm.nih.gov/pubmed/18541047 http://dx.doi.org/10.1186/1471-2105-9-S6-S12 |
Ejemplares similares
-
A novel harmony search-K means hybrid algorithm for clustering gene expression data
por: Nazeer, KA Abdul, et al.
Publicado: (2013) -
Incremental genetic K-means algorithm and its application in gene expression data analysis
por: Lu, Yi, et al.
Publicado: (2004) -
Balancing effort and benefit of K-means clustering algorithms in Big Data realms
por: Pérez-Ortega, Joaquín, et al.
Publicado: (2018) -
An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling
por: Zubair, Md., et al.
Publicado: (2022) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013)