Cargando…
A practical comparison of two K-Means clustering algorithms
BACKGROUND: Data clustering is a powerful technique for identifying data with similar characteristics, such as genes with similar expression patterns. However, not all implementations of clustering algorithms yield the same performance or the same clusters. RESULTS: In this paper, we study two imple...
Autores principales: | Wilkin, Gregory A, Huang, Xiuzhen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423442/ https://www.ncbi.nlm.nih.gov/pubmed/18541054 http://dx.doi.org/10.1186/1471-2105-9-S6-S19 |
Ejemplares similares
-
Clustering performance comparison using K-means and expectation maximization algorithms
por: Jung, Yong Gyu, et al.
Publicado: (2014) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018) -
An Entropy Regularization k-Means Algorithm with a New Measure of between-Cluster Distance in Subspace Clustering
por: Xiong, Liyan, et al.
Publicado: (2019)