Cargando…

Terminal proteins of Streptomyces chromosome can target DNA into eukaryotic nuclei

Streptomyces species are highly abundant soil bacteria that possess linear chromosomes (and linear plasmids). The 5′ ends of these molecules are covalently bound by terminal proteins (TPs), that are important for integrity and replication of the telomeres. There are at least two types of TPs, both o...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Hsiu-Hui, Huang, Chih-Hung, Lin, Alan M., Chen, Carton W.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425503/
https://www.ncbi.nlm.nih.gov/pubmed/18480119
http://dx.doi.org/10.1093/nar/gkm1170
Descripción
Sumario:Streptomyces species are highly abundant soil bacteria that possess linear chromosomes (and linear plasmids). The 5′ ends of these molecules are covalently bound by terminal proteins (TPs), that are important for integrity and replication of the telomeres. There are at least two types of TPs, both of which contain a DNA-binding domain and a classical eukaryotic nuclear localization signal (NLS). Here we show that the NLS motifs on these TPs are highly efficient in targeting the proteins along with covalently bound plasmid DNA into the nuclei of human cells. The TP-mediated nuclear targeting resembles the inter-kingdom gene transfer mediated by Ti plasmids of Agrobacterium tumefaciens, in which a piece of the Ti plasmid DNA is targeted to the plant nuclei by a covalently bound NLS-containing protein. The discovery of the nuclear localization functions of the Streptomyces TPs not only suggests possible inter-kingdom gene exchanges between Streptomyces and eukaryotes in soil but also provides a novel strategy for gene delivery in humans and other eukaryotes.