Cargando…

Dynamic causal modelling for EEG and MEG

Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiebel, Stefan J., Garrido, Marta I., Moran, Rosalyn J., Friston, Karl J.
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427062/
https://www.ncbi.nlm.nih.gov/pubmed/19003479
http://dx.doi.org/10.1007/s11571-008-9038-0
_version_ 1782156324155424768
author Kiebel, Stefan J.
Garrido, Marta I.
Moran, Rosalyn J.
Friston, Karl J.
author_facet Kiebel, Stefan J.
Garrido, Marta I.
Moran, Rosalyn J.
Friston, Karl J.
author_sort Kiebel, Stefan J.
collection PubMed
description Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments.
format Text
id pubmed-2427062
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-24270622008-11-20 Dynamic causal modelling for EEG and MEG Kiebel, Stefan J. Garrido, Marta I. Moran, Rosalyn J. Friston, Karl J. Cogn Neurodyn Research Article Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments. Springer Netherlands 2008-04-23 2008-06 /pmc/articles/PMC2427062/ /pubmed/19003479 http://dx.doi.org/10.1007/s11571-008-9038-0 Text en © The Author(s) 2008 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Research Article
Kiebel, Stefan J.
Garrido, Marta I.
Moran, Rosalyn J.
Friston, Karl J.
Dynamic causal modelling for EEG and MEG
title Dynamic causal modelling for EEG and MEG
title_full Dynamic causal modelling for EEG and MEG
title_fullStr Dynamic causal modelling for EEG and MEG
title_full_unstemmed Dynamic causal modelling for EEG and MEG
title_short Dynamic causal modelling for EEG and MEG
title_sort dynamic causal modelling for eeg and meg
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427062/
https://www.ncbi.nlm.nih.gov/pubmed/19003479
http://dx.doi.org/10.1007/s11571-008-9038-0
work_keys_str_mv AT kiebelstefanj dynamiccausalmodellingforeegandmeg
AT garridomartai dynamiccausalmodellingforeegandmeg
AT moranrosalynj dynamiccausalmodellingforeegandmeg
AT fristonkarlj dynamiccausalmodellingforeegandmeg