Cargando…

Sensory gating and its modulation by cannabinoids: electrophysiological, computational and mathematical analysis

Gating of sensory information can be assessed using an auditory conditioning-test paradigm which measures the reduction in the auditory evoked response to a test stimulus following an initial conditioning stimulus. Recording brainwaves from specific areas of the brain using multiple electrodes is he...

Descripción completa

Detalles Bibliográficos
Autores principales: Zachariou, Margarita, Dissanayake, Dilshani W. N., Coombes, Stephen, Owen, Markus R., Mason, Robert
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427066/
https://www.ncbi.nlm.nih.gov/pubmed/19003482
http://dx.doi.org/10.1007/s11571-008-9050-4
Descripción
Sumario:Gating of sensory information can be assessed using an auditory conditioning-test paradigm which measures the reduction in the auditory evoked response to a test stimulus following an initial conditioning stimulus. Recording brainwaves from specific areas of the brain using multiple electrodes is helpful in the study of the neurobiology of sensory gating. In this paper, we use such technology to investigate the role of cannabinoids in sensory gating in the CA3 region of the rat hippocampus. Our experimental results show that application of the exogenous cannabinoid agonist WIN55,212-2 can abolish sensory gating. We have developed a phenomenological model of cannabinoid dynamics incorporated within a spiking neural network model of CA3 with synaptically interacting pyramidal and basket cells. Direct numerical simulations of this model suggest that the basic mechanism for this effect can be traced to the suppression of inhibition of slow GABA(B) synapses. Furthermore, by working with a simpler mathematical firing rate model we are able to show the robustness of this mechanism for the abolition of sensory gating.