Cargando…

Association between LTA, TNF and AGER Polymorphisms and Late Diabetic Complications

BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G→A, LTA T60N C→A and AGER -374 T→A) in these genes alon...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindholm, Eero, Bakhtadze, Ekaterina, Cilio, Corrado, Agardh, Elisabet, Groop, Leif, Agardh, Carl-David
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2429972/
https://www.ncbi.nlm.nih.gov/pubmed/18575614
http://dx.doi.org/10.1371/journal.pone.0002546
Descripción
Sumario:BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G→A, LTA T60N C→A and AGER -374 T→A) in these genes alone or together (as haplotypes) increased the risk for diabetic complications. METHODOLOGY/PRINCIPAL FINDINGS: The studied polymorphisms were genotyped in 742 type 1 and 2957 type 2 diabetic patients as well as in 206 non-diabetic control subjects. The Haploview program was used to analyze putative linkage disequilibrium between studied polymorphisms. The TNF, LTA and AGER polymorphisms were associated with the HLA-DQB1 risk genotypes. The AGER -374 A allele was more common in type 1 diabetic patients with than without diabetic nephropathy (31.2 vs. 28.4%, p = 0.007). In a logistic regression analysis, the LTA but not the AGER polymorphism was associated with diabetic nephropathy (OR 2.55[1.11–5.86], p = 0.03). The AGER -374 A allele was associated with increased risk of sight threatening retinopathy in type 2 diabetic patients (1.65[1.11–2.45], p = 0.01) and also with increased risk for macrovascular disease in type 1 diabetic patients (OR 2.05[1.19–3.54], p = 0.01), but with decreased risk for macrovascular disease in type 2 diabetic patients (OR 0.66[0.49–0.90], p = 0.009). The TNF A allele was associated with increased risk for macrovascular complications in type 2 (OR 1.53 [1.04–2.25], p = 0.03, but not in type 1 diabetic patients. CONCLUSIONS/SIGNIFICANCE: The association between diabetic complications and LTA, TNF and AGER polymorphisms is complex, with partly different alleles conferring susceptibility in type 1 and type 2 diabetic patients. We can not exclude the possibility that the genes are part of a large haplotype block that also includes HLA-DQB1 risk genotypes.