Cargando…
Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation
Independent component analysis (ICA) is a widely applicable and effective approach in blind source separation (BSS), with limitations that sources are statistically independent. However, more common situation is blind source separation for nonnegative linear model (NNLM) where the observations are n...
Autores principales: | Zhang, Junying, Wei, Le, Feng, Xuerong, Ma, Zhen, Wang, Yue |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430033/ https://www.ncbi.nlm.nih.gov/pubmed/18566689 http://dx.doi.org/10.1155/2008/168769 |
Ejemplares similares
-
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
por: Hu, Guoqiang, et al.
Publicado: (2020) -
Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation
por: FitzGerald, Derry, et al.
Publicado: (2008) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Blind source separation: advances in theory, algorithms and applications
por: Naik, Ganesh, et al.
Publicado: (2014) -
Adaptive Multiview Nonnegative Matrix Factorization Algorithm for Integration of Multimodal Biomedical Data
por: Ray, Bisakha, et al.
Publicado: (2017)