Cargando…
Bone Resorption and Environmental Exposure to Cadmium in Women: A Population Study
BACKGROUND: Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. OBJECTIVE: We sought evidence for a direct osteotoxic effect of cadmium in women. METHODS: We randomly recruited 294 women (mean age, 49.2 years) from a Fl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Sciences
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430234/ https://www.ncbi.nlm.nih.gov/pubmed/18560534 http://dx.doi.org/10.1289/ehp.11167 |
Sumario: | BACKGROUND: Environmental exposure to cadmium decreases bone density indirectly through hypercalciuria resulting from renal tubular dysfunction. OBJECTIVE: We sought evidence for a direct osteotoxic effect of cadmium in women. METHODS: We randomly recruited 294 women (mean age, 49.2 years) from a Flemish population with environmental cadmium exposure. We measured 24-hr urinary cadmium and blood cadmium as indexes of lifetime and recent exposure, respectively. We assessed the multivariate-adjusted association of exposure with specific markers of bone resorption, urinary hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP), as well as with calcium excretion, various calciotropic hormones, and forearm bone density. RESULTS: In all women, the effect sizes associated with a doubling of lifetime exposure were 8.4% (p = 0.009) for HP, 6.9% (p = 0.10) for LP, 0.77 mmol/day (p = 0.003) for urinary calcium, –0.009 g/cm(2) (p = 0.055) for proximal forearm bone density, and –16.8% (p = 0.065) for serum parathyroid hormone. In 144 postmenopausal women, the corresponding effect sizes were –0.01223 g/cm(2) (p = 0.008) for distal forearm bone density, 4.7% (p = 0.064) for serum calcitonin, and 10.2% for bone-specific alkaline phosphatase. In all women, the effect sizes associated with a doubling of recent exposure were 7.2% (p = 0.001) for urinary HP, 7.2% (p = 0.021) for urinary LP, –9.0% (p = 0.097) for serum parathyroid hormone, and 5.5% (p = 0.008) for serum calcitonin. Only one woman had renal tubular dysfunction (urinary retinol-binding protein > 338 μg/day). CONCLUSIONS: In the absence of renal tubular dysfunction, environmental exposure to cadmium increases bone resorption in women, suggesting a direct osteotoxic effect with increased calciuria and reactive changes in calciotropic hormones. |
---|