Cargando…
Statistical models for quantifying diagnostic accuracy with multiple lesions per patient
We propose random-effects models to summarize and quantify the accuracy of the diagnosis of multiple lesions on a single image without assuming independence between lesions. The number of false-positive lesions was assumed to be distributed as a Poisson mixture, and the proportion of true-positive l...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430771/ https://www.ncbi.nlm.nih.gov/pubmed/18204044 http://dx.doi.org/10.1093/biostatistics/kxm052 |
Sumario: | We propose random-effects models to summarize and quantify the accuracy of the diagnosis of multiple lesions on a single image without assuming independence between lesions. The number of false-positive lesions was assumed to be distributed as a Poisson mixture, and the proportion of true-positive lesions was assumed to be distributed as a binomial mixture. We considered univariate and bivariate, both parametric and nonparametric mixture models. We applied our tools to simulated data and data of a study assessing diagnostic accuracy of virtual colonography with computed tomography in 200 patients suspected of having one or more polyps. |
---|