Cargando…
Implementing EM and Viterbi algorithms for Hidden Markov Model in linear memory
BACKGROUND: The Baum-Welch learning procedure for Hidden Markov Models (HMMs) provides a powerful tool for tailoring HMM topologies to data for use in knowledge discovery and clustering. A linear memory procedure recently proposed by Miklós, I. and Meyer, I.M. describes a memory sparse version of th...
Autores principales: | Churbanov, Alexander, Winters-Hilt, Stephen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430973/ https://www.ncbi.nlm.nih.gov/pubmed/18447951 http://dx.doi.org/10.1186/1471-2105-9-224 |
Ejemplares similares
-
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
por: Lam, Tin Y, et al.
Publicado: (2010) -
Hidden Markov Model Variants and their Application
por: Winters-Hilt, Stephen
Publicado: (2006) -
Harvest Stage Recognition and Potential Fruit Damage Indicator for Berries Based on Hidden Markov Models and the Viterbi Algorithm
por: Orchard, Marcos, et al.
Publicado: (2019) -
Error statistics of hidden Markov model and hidden Boltzmann model results
por: Newberg, Lee A
Publicado: (2009) -
Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER
por: Ferreira, Miguel, et al.
Publicado: (2014)