Cargando…
Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
BACKGROUND: Time-course microarray experiments are being increasingly used to characterize dynamic biological processes. In these experiments, the goal is to identify genes differentially expressed in time-course data, measured between different biological conditions. These differentially expressed...
Autores principales: | Jonnalagadda, Sudhakar, Srinivasan, Rajagopalan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435549/ https://www.ncbi.nlm.nih.gov/pubmed/18534040 http://dx.doi.org/10.1186/1471-2105-9-267 |
Ejemplares similares
-
NIFTI: An evolutionary approach for finding number of clusters in microarray data
por: Jonnalagadda, Sudhakar, et al.
Publicado: (2009) -
Identification of differentially expressed genes in microarray data in a principal component space
por: Ospina, Luis, et al.
Publicado: (2013) -
Permutation-validated principal components analysis of microarray data
por: Landgrebe, Jobst, et al.
Publicado: (2002) -
An efficient graph theory based method to identify every minimal reaction set in a metabolic network
por: Jonnalagadda, Sudhakar, et al.
Publicado: (2014) -
Component retention in principal component analysis with application to cDNA microarray data
por: Cangelosi, Richard, et al.
Publicado: (2007)