Cargando…
Variable selection for large p small n regression models with incomplete data: Mapping QTL with epistases
BACKGROUND: Identifying quantitative trait loci (QTL) for both additive and epistatic effects raises the statistical issue of selecting variables from a large number of candidates using a small number of observations. Missing trait and/or marker values prevent one from directly applying the classica...
Autores principales: | Zhang, Min, Zhang, Dabao, Wells, Martin T |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435550/ https://www.ncbi.nlm.nih.gov/pubmed/18510743 http://dx.doi.org/10.1186/1471-2105-9-251 |
Ejemplares similares
-
Network-based group variable selection for detecting expression quantitative trait loci (eQTL)
por: Wang, Weichen, et al.
Publicado: (2011) -
MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments
por: Veyrieras, Jean-Baptiste, et al.
Publicado: (2007) -
The ADCYAP1R1 Gene Is Correlated With Posttraumatic Stress Disorder Symptoms Through Diverse Epistases in a Traumatized Chinese Population
por: Wang, Li, et al.
Publicado: (2021) -
Data-driven assessment of eQTL mapping methods
por: Michaelson, Jacob J, et al.
Publicado: (2010) -
Functional regression method for whole genome eQTL epistasis analysis with sequencing data
por: Xu, Kelin, et al.
Publicado: (2017)