Cargando…

PPARγ and MEK Interactions in Cancer

Peroxisome proliferator-activated receptor-gamma (PPARγ) exerts multiple functions in determination of cell fate, tissue metabolism, and host immunity. Two synthetic PPARγ ligands (rosiglitazone and pioglitazone) were approved for the therapy of type-2 diabetes mellitus and are expected to serve as...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgermeister, Elke, Seger, Rony
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2440494/
https://www.ncbi.nlm.nih.gov/pubmed/18596912
http://dx.doi.org/10.1155/2008/309469
Descripción
Sumario:Peroxisome proliferator-activated receptor-gamma (PPARγ) exerts multiple functions in determination of cell fate, tissue metabolism, and host immunity. Two synthetic PPARγ ligands (rosiglitazone and pioglitazone) were approved for the therapy of type-2 diabetes mellitus and are expected to serve as novel cures for inflammatory diseases and cancer. However, PPARγ and its ligands exhibit a janus-face behaviour as tumor modulators in various systems, resulting in either tumor suppression or tumor promotion. This may be in part due to signaling crosstalk to the mitogen-activated protein kinase (MAPK) cascades. The genomic activity of PPARγ is modulated, in addition to ligand binding, by phosphorylation of a serine residue by MAPKs, such as extracellular signal-regulated protein kinases-1/2 (ERK-1/2), or by nucleocytoplasmic compartmentalization through the ERK activators MAPK kinases-1/2 (MEK-1/2). PPARγ ligands themselves activate the ERK cascade through nongenomic and often PPARγ-independent signaling. In the current review, we discuss the molecular mechanisms and physiological implications of the crosstalk of PPARγ with MEK-ERK signaling and its potential as a novel drug target for cancer therapy in patients.