Cargando…
Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development
BACKGROUND: Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441585/ https://www.ncbi.nlm.nih.gov/pubmed/18507824 http://dx.doi.org/10.1186/1471-213X-8-58 |
_version_ | 1782156614229295104 |
---|---|
author | Strasser, Markus J Mackenzie, Natalia C Dumstrei, Karin Nakkrasae, La-Iad Stebler, Jürg Raz, Erez |
author_facet | Strasser, Markus J Mackenzie, Natalia C Dumstrei, Karin Nakkrasae, La-Iad Stebler, Jürg Raz, Erez |
author_sort | Strasser, Markus J |
collection | PubMed |
description | BACKGROUND: Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. RESULTS: Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. CONCLUSION: Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. |
format | Text |
id | pubmed-2441585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-24415852008-06-28 Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development Strasser, Markus J Mackenzie, Natalia C Dumstrei, Karin Nakkrasae, La-Iad Stebler, Jürg Raz, Erez BMC Dev Biol Research Article BACKGROUND: Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development. RESULTS: Using transgenic fish expressing a fluorescently labeled novel component of Zebrafish germ cell granules termed Granulito, we followed the morphology and distribution of the granules. We show that whereas these granules initially exhibit a wide size variation, by the end of the first day of development they become a homogeneous population of medium size granules. We investigated this resizing event and demonstrated the role of microtubules and the minus-end microtubule dependent motor protein Dynein in the process. Last, we show that the function of the germ cell granule resident protein the Tudor domain containing protein-7 (Tdrd7) is required for determination of granule morphology and number. CONCLUSION: Our results suggest that Zebrafish germ cell granules undergo a transformation process, which involves germ cell specific proteins as well as the microtubular network. BioMed Central 2008-05-28 /pmc/articles/PMC2441585/ /pubmed/18507824 http://dx.doi.org/10.1186/1471-213X-8-58 Text en Copyright © 2008 Strasser et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Strasser, Markus J Mackenzie, Natalia C Dumstrei, Karin Nakkrasae, La-Iad Stebler, Jürg Raz, Erez Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title | Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title_full | Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title_fullStr | Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title_full_unstemmed | Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title_short | Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development |
title_sort | control over the morphology and segregation of zebrafish germ cell granules during embryonic development |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441585/ https://www.ncbi.nlm.nih.gov/pubmed/18507824 http://dx.doi.org/10.1186/1471-213X-8-58 |
work_keys_str_mv | AT strassermarkusj controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment AT mackenzienataliac controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment AT dumstreikarin controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment AT nakkrasaelaiad controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment AT steblerjurg controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment AT razerez controloverthemorphologyandsegregationofzebrafishgermcellgranulesduringembryonicdevelopment |