Cargando…
Classifying transcription factor targets and discovering relevant biological features
BACKGROUND: An important goal in post-genomic research is discovering the network of interactions between transcription factors (TFs) and the genes they regulate. We have previously reported the development of a supervised-learning approach to TF target identification, and used it to predict targets...
Autores principales: | Holloway, Dustin T, Kon, Mark, DeLisi, Charles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441612/ https://www.ncbi.nlm.nih.gov/pubmed/18513408 http://dx.doi.org/10.1186/1745-6150-3-22 |
Ejemplares similares
-
Machine learning for regulatory analysis and transcription factor target prediction in yeast
por: Holloway, Dustin T., et al.
Publicado: (2006) -
In silico regulatory analysis for exploring human disease progression
por: Holloway, Dustin T, et al.
Publicado: (2008) -
VisANT: data-integrating visual framework for biological networks and modules
por: Hu, Zhenjun, et al.
Publicado: (2005) -
Identification and Characterization of Renal Cell Carcinoma Gene Markers
por: Dalgin, Gul S., et al.
Publicado: (2007) -
The role of synthetic biology in climate change mitigation
por: DeLisi, Charles
Publicado: (2019)