Cargando…
Double feature selection and cluster analyses in mining of microarray data from cotton
BACKGROUND: Cotton fiber is a single-celled seed trichome of major biological and economic importance. In recent years, genomic approaches such as microarray-based expression profiling were used to study fiber growth and development to understand the developmental mechanisms of fiber at the molecula...
Autores principales: | Alabady, Magdy S, Youn, Eunseog, Wilkins, Thea A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441630/ https://www.ncbi.nlm.nih.gov/pubmed/18570655 http://dx.doi.org/10.1186/1471-2164-9-295 |
Ejemplares similares
-
Effective feature selection framework for cluster analysis of microarray data
por: Pok, Gouchol, et al.
Publicado: (2010) -
Microarray data mining using landmark gene-guided clustering
por: Chopra, Pankaj, et al.
Publicado: (2008) -
Mining mouse microarray data
por: Wigle, Dennis A, et al.
Publicado: (2001) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018) -
Microarray Data Analysis and Mining Tools
por: Selvaraj, Saravanakumar, et al.
Publicado: (2011)