Cargando…
Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage
The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe(2+) and O(2)), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441780/ https://www.ncbi.nlm.nih.gov/pubmed/18492718 http://dx.doi.org/10.1093/nar/gkn302 |
_version_ | 1782156632246976512 |
---|---|
author | Chen, Jingyang Ghorai, Manas K. Kenney, Grace Stubbe, JoAnne |
author_facet | Chen, Jingyang Ghorai, Manas K. Kenney, Grace Stubbe, JoAnne |
author_sort | Chen, Jingyang |
collection | PubMed |
description | The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe(2+) and O(2)), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [(32)P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed. |
format | Text |
id | pubmed-2441780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-24417802008-07-02 Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage Chen, Jingyang Ghorai, Manas K. Kenney, Grace Stubbe, JoAnne Nucleic Acids Res Chemistry The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe(2+) and O(2)), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [(32)P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed. Oxford University Press 2008-06 2008-05-20 /pmc/articles/PMC2441780/ /pubmed/18492718 http://dx.doi.org/10.1093/nar/gkn302 Text en © 2008 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Chen, Jingyang Ghorai, Manas K. Kenney, Grace Stubbe, JoAnne Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title | Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title_full | Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title_fullStr | Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title_full_unstemmed | Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title_short | Mechanistic studies on bleomycin-mediated DNA damage: multiple binding modes can result in double-stranded DNA cleavage |
title_sort | mechanistic studies on bleomycin-mediated dna damage: multiple binding modes can result in double-stranded dna cleavage |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441780/ https://www.ncbi.nlm.nih.gov/pubmed/18492718 http://dx.doi.org/10.1093/nar/gkn302 |
work_keys_str_mv | AT chenjingyang mechanisticstudiesonbleomycinmediateddnadamagemultiplebindingmodescanresultindoublestrandeddnacleavage AT ghoraimanask mechanisticstudiesonbleomycinmediateddnadamagemultiplebindingmodescanresultindoublestrandeddnacleavage AT kenneygrace mechanisticstudiesonbleomycinmediateddnadamagemultiplebindingmodescanresultindoublestrandeddnacleavage AT stubbejoanne mechanisticstudiesonbleomycinmediateddnadamagemultiplebindingmodescanresultindoublestrandeddnacleavage |