Cargando…
Using the information embedded in the testing sample to break the limits caused by the small sample size in microarray-based classification
BACKGROUND: Microarray-based tumor classification is characterized by a very large number of features (genes) and small number of samples. In such cases, statistical techniques cannot determine which genes are correlated to each tumor type. A popular solution is the use of a subset of pre-specified...
Autores principales: | Zhu, Manli, Martinez, Aleix M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443146/ https://www.ncbi.nlm.nih.gov/pubmed/18554411 http://dx.doi.org/10.1186/1471-2105-9-280 |
Ejemplares similares
-
Power and sample size estimation in microarray studies
por: Lin, Wei-Jiun, et al.
Publicado: (2010) -
A simple method for assessing sample sizes in microarray experiments
por: Tibshirani, Robert
Publicado: (2006) -
A mixture model approach to sample size estimation in two-sample comparative microarray experiments
por: Jørstad, Tommy S, et al.
Publicado: (2008) -
Multiclass classification of microarray data samples with a reduced number of genes
por: Tapia, Elizabeth, et al.
Publicado: (2011) -
Sample size calculation for microarray experiments with blocked one-way design
por: Jung, Sin-Ho, et al.
Publicado: (2009)