Cargando…
Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems
Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large...
Autores principales: | Zdunek, Rafal, Cichocki, Andrzej |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2443642/ https://www.ncbi.nlm.nih.gov/pubmed/18628948 http://dx.doi.org/10.1155/2008/939567 |
Ejemplares similares
-
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2013) -
Correction: Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization
por: Guan, Naiyang, et al.
Publicado: (2014) -
Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis
por: Hu, Guoqiang, et al.
Publicado: (2020) -
Pattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation
por: Zhang, Junying, et al.
Publicado: (2008)