Cargando…

Genetic Steps to Organ Laterality in Zebrafish

All internal organs are asymmetric along the left–right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutati...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jau-Nian, van Bebber, Frauke, Goldstein, Allan M., Serluca, Fabrizio C., Jackson, Donald, Childs, Sarah, Serbedzija, George, Warren, Kerri S., Mably, John D., Lindahl, Per, Mayer, Alan, Haffter, Pascal, Fishman, Mark C.
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447199/
https://www.ncbi.nlm.nih.gov/pubmed/18628903
http://dx.doi.org/10.1002/cfg.74
_version_ 1782156880807723008
author Chen, Jau-Nian
van Bebber, Frauke
Goldstein, Allan M.
Serluca, Fabrizio C.
Jackson, Donald
Childs, Sarah
Serbedzija, George
Warren, Kerri S.
Mably, John D.
Lindahl, Per
Mayer, Alan
Haffter, Pascal
Fishman, Mark C.
author_facet Chen, Jau-Nian
van Bebber, Frauke
Goldstein, Allan M.
Serluca, Fabrizio C.
Jackson, Donald
Childs, Sarah
Serbedzija, George
Warren, Kerri S.
Mably, John D.
Lindahl, Per
Mayer, Alan
Haffter, Pascal
Fishman, Mark C.
author_sort Chen, Jau-Nian
collection PubMed
description All internal organs are asymmetric along the left–right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left–right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left–right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left–right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals.
format Text
id pubmed-2447199
institution National Center for Biotechnology Information
language English
publishDate 2001
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-24471992008-07-14 Genetic Steps to Organ Laterality in Zebrafish Chen, Jau-Nian van Bebber, Frauke Goldstein, Allan M. Serluca, Fabrizio C. Jackson, Donald Childs, Sarah Serbedzija, George Warren, Kerri S. Mably, John D. Lindahl, Per Mayer, Alan Haffter, Pascal Fishman, Mark C. Comp Funct Genomics Research Article All internal organs are asymmetric along the left–right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left–right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left–right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left–right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals. Hindawi Publishing Corporation 2001-04 /pmc/articles/PMC2447199/ /pubmed/18628903 http://dx.doi.org/10.1002/cfg.74 Text en Copyright © 2001 Hindawi Publishing Corporation. http://creativecommons.org/licenses/by/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chen, Jau-Nian
van Bebber, Frauke
Goldstein, Allan M.
Serluca, Fabrizio C.
Jackson, Donald
Childs, Sarah
Serbedzija, George
Warren, Kerri S.
Mably, John D.
Lindahl, Per
Mayer, Alan
Haffter, Pascal
Fishman, Mark C.
Genetic Steps to Organ Laterality in Zebrafish
title Genetic Steps to Organ Laterality in Zebrafish
title_full Genetic Steps to Organ Laterality in Zebrafish
title_fullStr Genetic Steps to Organ Laterality in Zebrafish
title_full_unstemmed Genetic Steps to Organ Laterality in Zebrafish
title_short Genetic Steps to Organ Laterality in Zebrafish
title_sort genetic steps to organ laterality in zebrafish
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447199/
https://www.ncbi.nlm.nih.gov/pubmed/18628903
http://dx.doi.org/10.1002/cfg.74
work_keys_str_mv AT chenjaunian geneticstepstoorganlateralityinzebrafish
AT vanbebberfrauke geneticstepstoorganlateralityinzebrafish
AT goldsteinallanm geneticstepstoorganlateralityinzebrafish
AT serlucafabrizioc geneticstepstoorganlateralityinzebrafish
AT jacksondonald geneticstepstoorganlateralityinzebrafish
AT childssarah geneticstepstoorganlateralityinzebrafish
AT serbedzijageorge geneticstepstoorganlateralityinzebrafish
AT warrenkerris geneticstepstoorganlateralityinzebrafish
AT mablyjohnd geneticstepstoorganlateralityinzebrafish
AT lindahlper geneticstepstoorganlateralityinzebrafish
AT mayeralan geneticstepstoorganlateralityinzebrafish
AT haffterpascal geneticstepstoorganlateralityinzebrafish
AT fishmanmarkc geneticstepstoorganlateralityinzebrafish