Cargando…

Advancing Post-Genome Data and System Integration Through Machine Learning

Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web....

Descripción completa

Detalles Bibliográficos
Autor principal: Azuaje, Francisco
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447240/
https://www.ncbi.nlm.nih.gov/pubmed/18628880
http://dx.doi.org/10.1002/cfg.129
Descripción
Sumario:Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.