Cargando…

Fishing With (Proto)Net—A Principled Approach to Protein Target Selection

Structural genomics strives to represent the entire protein space. The first step towards achieving this goal is by rationally selecting proteins whose structures have not been determined, but that represent an as yet unknown structural superfamily or fold. Once such a structure is solved, it can be...

Descripción completa

Detalles Bibliográficos
Autor principal: Linial, Michal
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447289/
https://www.ncbi.nlm.nih.gov/pubmed/18629007
http://dx.doi.org/10.1002/cfg.328
_version_ 1782156902562529280
author Linial, Michal
author_facet Linial, Michal
author_sort Linial, Michal
collection PubMed
description Structural genomics strives to represent the entire protein space. The first step towards achieving this goal is by rationally selecting proteins whose structures have not been determined, but that represent an as yet unknown structural superfamily or fold. Once such a structure is solved, it can be used as a template for modelling homologous proteins. This will aid in unveiling the structural diversity of the protein space. Currently, no reliable method for accurate 3D structural prediction is available when a sequence or a structure homologue is not available. Here we present a systematic methodology for selecting target proteins whose structure is likely to adopt a new, as yet unknown superfamily or fold. Our method takes advantage of a global classification of the sequence space as presented by ProtoNet-3D, which is a hierarchical agglomerative clustering of the proteins of interest (the proteins in Swiss-Prot) along with all solved structures (taken from the PDB). By navigating in the scaffold of ProtoNet-3D, we yield a prioritized list of proteins that are not yet structurally solved, along with the probability of each of the proteins belonging to a new superfamily or fold. The sorted list has been self-validated against real structural data that was not available when the predictions were made. The practical application of using our computational–statistical method to determine novel superfamilies for structural genomics projects is also discussed.
format Text
id pubmed-2447289
institution National Center for Biotechnology Information
language English
publishDate 2003
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-24472892008-07-14 Fishing With (Proto)Net—A Principled Approach to Protein Target Selection Linial, Michal Comp Funct Genomics Research Article Structural genomics strives to represent the entire protein space. The first step towards achieving this goal is by rationally selecting proteins whose structures have not been determined, but that represent an as yet unknown structural superfamily or fold. Once such a structure is solved, it can be used as a template for modelling homologous proteins. This will aid in unveiling the structural diversity of the protein space. Currently, no reliable method for accurate 3D structural prediction is available when a sequence or a structure homologue is not available. Here we present a systematic methodology for selecting target proteins whose structure is likely to adopt a new, as yet unknown superfamily or fold. Our method takes advantage of a global classification of the sequence space as presented by ProtoNet-3D, which is a hierarchical agglomerative clustering of the proteins of interest (the proteins in Swiss-Prot) along with all solved structures (taken from the PDB). By navigating in the scaffold of ProtoNet-3D, we yield a prioritized list of proteins that are not yet structurally solved, along with the probability of each of the proteins belonging to a new superfamily or fold. The sorted list has been self-validated against real structural data that was not available when the predictions were made. The practical application of using our computational–statistical method to determine novel superfamilies for structural genomics projects is also discussed. Hindawi Publishing Corporation 2003-10 /pmc/articles/PMC2447289/ /pubmed/18629007 http://dx.doi.org/10.1002/cfg.328 Text en Copyright © 2003 Hindawi Publishing Corporation. http://creativecommons.org/licenses/by/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Linial, Michal
Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title_full Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title_fullStr Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title_full_unstemmed Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title_short Fishing With (Proto)Net—A Principled Approach to Protein Target Selection
title_sort fishing with (proto)net—a principled approach to protein target selection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447289/
https://www.ncbi.nlm.nih.gov/pubmed/18629007
http://dx.doi.org/10.1002/cfg.328
work_keys_str_mv AT linialmichal fishingwithprotonetaprincipledapproachtoproteintargetselection