Cargando…
Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks
Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analy...
Autores principales: | Shmulevich, Ilya, Gluhovsky, Ilya, Hashimoto, Ronaldo F., Dougherty, Edward R., Zhang, Wei |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447305/ https://www.ncbi.nlm.nih.gov/pubmed/18629023 http://dx.doi.org/10.1002/cfg.342 |
Ejemplares similares
-
Probabilistic boolean networks predict transcription factor targets to induce transdifferentiation
por: Tercan, Bahar, et al.
Publicado: (2022) -
Inference of Boolean Networks Using Sensitivity Regularization
por: Liu, Wenbin, et al.
Publicado: (2008) -
Scalable Steady State Analysis of Boolean Biological Regulatory Networks
por: Ay, Ferhat, et al.
Publicado: (2009) -
Intervention in Context-Sensitive Probabilistic Boolean Networks Revisited
por: Faryabi, Babak, et al.
Publicado: (2009) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007)