Cargando…
New Computational Tools for Brassica Genome Research
With the increasing quantities of Brassica genomic data being entered into the public domain and in preparation for the complete Brassica genome sequencing effort, there is a growing requirement for the structuring and detailed bioinformatic analysis of Brassica genomic information within a user-fri...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447447/ https://www.ncbi.nlm.nih.gov/pubmed/18629157 http://dx.doi.org/10.1002/cfg.394 |
_version_ | 1782156941243449344 |
---|---|
author | Love, Christopher G. Batley, Jacqueline Lim, Geraldine Robinson, Andrew J. Savage, David Singh, Daniel Spangenberg, German C. Edwards, David |
author_facet | Love, Christopher G. Batley, Jacqueline Lim, Geraldine Robinson, Andrew J. Savage, David Singh, Daniel Spangenberg, German C. Edwards, David |
author_sort | Love, Christopher G. |
collection | PubMed |
description | With the increasing quantities of Brassica genomic data being entered into the public domain and in preparation for the complete Brassica genome sequencing effort, there is a growing requirement for the structuring and detailed bioinformatic analysis of Brassica genomic information within a user-friendly database. At the Plant Biotechnology Centre, Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data, to aid its application to agricultural biotechnology research. These tools include a sequence database, ASTRA, a sequence processing pipeline incorporating annotation against GenBank, SwissProt and Arabidopsis Gene Ontology (GO) data and tools for molecular marker discovery and comparative genome analysis. All sequences are mined for simple sequence repeat (SSR) molecular markers using ‘SSR primer’ and mapped onto the complete Arabidopsis thaliana genome by sequence comparison. The database may be queried using a text-based search of sequence annotation or GO terms, BLAST comparison against resident sequences, or by the position of candidate orthologues within the Arabidopsis genome. Tools have also been developed and applied to the discovery of single nucleotide polymorphism (SNP) molecular markers and the in silico mapping of Brassica BAC end sequences onto the Arabidopsis genome. Planned extensions to this resource include the integration of gene expression data and the development of an EnsEMBL-based genome viewer. |
format | Text |
id | pubmed-2447447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-24474472008-07-14 New Computational Tools for Brassica Genome Research Love, Christopher G. Batley, Jacqueline Lim, Geraldine Robinson, Andrew J. Savage, David Singh, Daniel Spangenberg, German C. Edwards, David Comp Funct Genomics Research Article With the increasing quantities of Brassica genomic data being entered into the public domain and in preparation for the complete Brassica genome sequencing effort, there is a growing requirement for the structuring and detailed bioinformatic analysis of Brassica genomic information within a user-friendly database. At the Plant Biotechnology Centre, Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data, to aid its application to agricultural biotechnology research. These tools include a sequence database, ASTRA, a sequence processing pipeline incorporating annotation against GenBank, SwissProt and Arabidopsis Gene Ontology (GO) data and tools for molecular marker discovery and comparative genome analysis. All sequences are mined for simple sequence repeat (SSR) molecular markers using ‘SSR primer’ and mapped onto the complete Arabidopsis thaliana genome by sequence comparison. The database may be queried using a text-based search of sequence annotation or GO terms, BLAST comparison against resident sequences, or by the position of candidate orthologues within the Arabidopsis genome. Tools have also been developed and applied to the discovery of single nucleotide polymorphism (SNP) molecular markers and the in silico mapping of Brassica BAC end sequences onto the Arabidopsis genome. Planned extensions to this resource include the integration of gene expression data and the development of an EnsEMBL-based genome viewer. Hindawi Publishing Corporation 2004-04 /pmc/articles/PMC2447447/ /pubmed/18629157 http://dx.doi.org/10.1002/cfg.394 Text en Copyright © 2004 Hindawi Publishing Corporation. http://creativecommons.org/licenses/by/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Love, Christopher G. Batley, Jacqueline Lim, Geraldine Robinson, Andrew J. Savage, David Singh, Daniel Spangenberg, German C. Edwards, David New Computational Tools for Brassica Genome Research |
title | New Computational Tools for Brassica Genome Research |
title_full | New Computational Tools for Brassica Genome Research |
title_fullStr | New Computational Tools for Brassica Genome Research |
title_full_unstemmed | New Computational Tools for Brassica Genome Research |
title_short | New Computational Tools for Brassica Genome Research |
title_sort | new computational tools for brassica genome research |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447447/ https://www.ncbi.nlm.nih.gov/pubmed/18629157 http://dx.doi.org/10.1002/cfg.394 |
work_keys_str_mv | AT lovechristopherg newcomputationaltoolsforbrassicagenomeresearch AT batleyjacqueline newcomputationaltoolsforbrassicagenomeresearch AT limgeraldine newcomputationaltoolsforbrassicagenomeresearch AT robinsonandrewj newcomputationaltoolsforbrassicagenomeresearch AT savagedavid newcomputationaltoolsforbrassicagenomeresearch AT singhdaniel newcomputationaltoolsforbrassicagenomeresearch AT spangenberggermanc newcomputationaltoolsforbrassicagenomeresearch AT edwardsdavid newcomputationaltoolsforbrassicagenomeresearch |