Cargando…
Som-Based Class Discovery Exploring the ICA-Reduced Features of Microarray Expression Profiles
Gene expression datasets are large and complex, having many variables and unknown internal structure. We apply independent component analysis (ICA) to derive a less redundant representation of the expression data. The decomposition produces components with minimal statistical dependence and reveals...
Autores principales: | Dragomir, Andrei, Mavroudi, Seferina, Bezerianos, Anastasios |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447468/ https://www.ncbi.nlm.nih.gov/pubmed/18629176 http://dx.doi.org/10.1002/cfg.444 |
Ejemplares similares
-
Computational methods for processing and analysis of biological pathways
por: Bezerianos, Anastasios, et al.
Publicado: (2017) -
Discovery of stroke-related blood biomarkers from gene expression network models
por: Theofilatos, Konstantinos, et al.
Publicado: (2019) -
MEvA-X: a hybrid multiobjective evolutionary tool using an XGBoost classifier for biomarkers discovery on biomedical datasets
por: Panagiotopoulos, Konstantinos, et al.
Publicado: (2023) -
Quo vadis computational analysis of PPI data or why the future isn't here yet
por: Theofilatos, Konstantinos A., et al.
Publicado: (2015) -
Reducing Opioid Prescriptions by Identifying Responders on Topical Analgesic Treatment Using an Individualized Medicine and Predictive Analytics Approach
por: Gudin, Jeffrey, et al.
Publicado: (2020)